Abstract

The work addresses physical simulation and dilatometric study of one-step and double-step heat treatments of medium-Mn steel designed for automotive sheets. The conventional one-step isothermal bainitic transformation was applied as the reference heat treatment. The newly implemented heat treatment consisted of isothermal holding in a bainitic region followed by additional holding of the material at reduced temperature also in the bainitic range. This step was added to refine the microstructure, which led to the stabilization of the retained austenite. Calculations of equilibrium state and non-equilibrium cooling and simulations of the developed thermal cycles were performed using the thermodynamic JMatPro software. The physical simulations of the heat treatment were performed in the dilatometer. The obtained samples were subjected to microscopic observations using light and SEM microscopy. One- and two-step heat treatments allowed to obtain bainitic structures with high contents of retained austenite. Lowering the temperature of one-step isothermal holding resulted in the bainite refinement and adjacent retained austenite. The increased Mn content in steel increased its susceptibility to form coalesced bainite resulting in the partial formation of thicker plates despite a decrease in a process temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.