Abstract

This paper studies a class of fractional-order systems (FOSs) and proposes control laws based on physical significance variables. Lyapunov techniques and the methods that derive from Yakubovici–Kalman–Popov Lemma are used, and the frequency criterions that ensure asymptotic stability of the physical significance variable closed-loop system are inferred. The asymptotic stability of the observer system is studied for a sector control law where the output is defined by the physical significance variables. Frequency criterions and conditions for asymptotic stability are determined. The control techniques are extended to a class of linear delay fractional-order systems and nonlinear FOS. Numerical simulations of a class of systems described by fractional-order models show the method efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call