Abstract

In Lahontan Valley, Nevada, arsenic, cobalt, tungsten, uranium, radon, and polonium-210 are carcinogens that occur naturally in sediments and groundwater. Arsenic and cobalt are principally derived from erosion of volcanic rocks in the local mountains and tungsten and uranium are derived from erosion of granitic rocks in headwater reaches of the Carson River. Radon and 210Po originate from radioactive decay of uranium in the sediments. Arsenic, aluminum, cobalt, iron, and manganese concentrations in household dust suggest it is derived from the local soils. Excess zinc and chromium in the dust are probably derived from the vacuum cleaner used to collect the dust, or household sources such as the furnace. Some samples have more than 5 times more cobalt in the dust than in the local soil, but whether the source of the excess cobalt is anthropogenic or natural cannot be determined with the available data. Cobalt concentrations are low in groundwater, but arsenic, uranium, radon, and 210Po concentrations often exceed human-health standards, and sometime greatly exceed them. Exposure to radon and its decay products in drinking water can vary significantly depending on when during the day that the water is consumed. Although the data suggests there have been no long term changes in groundwater chemistry that corresponds to the Lahontan Valley leukemia cluster, the occurrence of the very unusual leukemia cluster in an area with numerous 210Po and arsenic contaminated wells is striking, particularly in conjunction with the exceptionally high levels of urinary tungsten in Lahontan Valley residents. Additional research is needed on potential exposure pathways involving food or inhalation, and on synergistic effects of mixtures of these natural contaminants on susceptibility to development of leukemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call