Abstract

The previous research on adaptive neuro-fuzzy inferential systems (ANFIS) presented an approach to estimating the average indoor temperature in the building environment. However, the restriction on robustness limited the energy efficiency and indoor comfort ratio. An accurate and robust prediction model is proposed in this paper. Comparing to the previous unphysical rules based ANFIS prediction model, the improvement of the physical rules based ANFIS prediction model will be presented and the reason of better performance of this new model will be discussed. Three performance measures are using in evaluating the proposed prediction model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.