Abstract

Acoustic keyword spotting (KWS) plays a pivotal role in the voice-activated systems of artificial intelligence (AI), allowing for hands-free interactions between humans and smart devices through information retrieval of the voice commands. The cloud computing technology integrated with the artificial neural networks has been employed to execute the KWS tasks, which however suffers from propagation delay and the risk of privacy breach. Here, we report a single-node reservoir computing (RC) system based on the CuInP2S6 (CIPS)/graphene heterostructure planar device for implementing the KWS task with low computation cost. Through deliberately tuning the Schottky barrier height at the ferroelectric CIPS interfaces for the thermionic injection and transport of the electrons, the typical nonlinear current response and fading memory characteristics are achieved in the device. Additionally, the device exhibits diverse synaptic plasticity with an excellent separation capability of the temporal information. We construct a RC system through employing the ferroelectric device as the physical node to spot the acoustic keywords, i.e., the natural numbers from 1 to 9 based on simulation, in which the system demonstrates outstanding performance with high accuracy rate (>94.6%) and recall rate (>92.0%). Our work promises physical RC in single-node configuration as a prospective computing platform to process the acoustic keywords, promoting its applications in the artificial auditory system at the edge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.