Abstract

AbstractBioinspired computation systems can achieve artificial intelligence, bypassing fundamental bottlenecks and cost constraints. Computational frameworks suited for temporal/sequential data processing such as recurrent neural networks (RNNs) suffer from problems of high complexity and low efficiency. Physical systems assembled with nanoscale materials and devices represent as an alternative route to serve as the core component for physically implanted reservoir computing. In this review, an overview of the development of the paradigm of physical reservoir computing (PRC) is provided and the typical physical reservoirs constructed with nanomaterials and nanodevices are described. The physical reservoirs based on multiple nanomaterials overcome the problems of RNN, show strong robustness, and effectively deal with tasks with improved reliability and availability. Finally, the challenges and perspectives of nanomaterial and nanodevice‐based PRC as a component of next‐generation machine learning systems are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.