Abstract
Pure zircon and scheelite LuVO4 were prepared by solid state reaction and high-pressure route, respectively. Structure, elastic constants, lattice dynamics and thermodynamics of LuVO4 polymorphs were studied by experiments and first principles calculation. Calculations here are in good agreement with the experimental results. The phonon dispersions of LuVO4 polymorphs were studied by the linear response method. The calculated phonon dispersions show that zircon and scheelite LuVO4 phases are dynamically stable. Raman-active frequencies were measured and assigned to different modes according to the calculations. The internal frequencies shift downward after phase transition from zircon to scheelite. Born effective charge tensors elements for both phases are analyzed. The finite temperature thermodynamic properties of LuVO4 polymorphs were calculated from the obtained phonon density of states by quasi-harmonic approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.