Abstract
We analysed XMM-{\it Newton} EPIC data for 53 galaxy clusters. Through 2D spectral maps, we provide the most detailed and extended view of the spatial distribution of temperature (kT), pressure (P), entropy (S) and metallicity (Z) of galaxy clusters to date with the aim of correlating the dynamical state of the system to six cool-core diagnoses from the literature. With the objective of building 2D maps and resolving structures in kT, P, S and Z, we divide the data in small regions from which spectra can be extracted. Our analysis shows that when clusters are spherically symmetric the cool-cores (CC) are preserved, the systems are relaxed with little signs of perturbation, and most of the CC criteria agree. The disturbed clusters are elongated, show clear signs of interaction in the 2D maps, and most do not have a cool-core. However, 16 well studied clusters classified as CC by at least four criteria show spectral maps that appear disturbed. All of these clusters but one show clear signs of recent mergers, with a complex structure and geometry but with a cool-core that remains preserved. Thus, although very useful for CC characterization, most diagnoses are too simplistic to reproduce the overall structure and dynamics of galaxy clusters, and therefore the selection of relaxed systems according to these criteria may affect mass estimates. The complex structure of galaxy clusters can be reliably assessed through the 2D maps presented here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.