Abstract

Magnetic and thermodynamical properties of a system of spins in a honeycomb lattice, such as magnetization, magnetic susceptibility and specific heat, in a low-temperature regime are investigated by considering the effects of a Kekulé scalar exchange and QED vacuum polarization corrections to the interparticle potential. The spin lattice calculations are carried out by means of Monte Carlo simulations. We present a number of comparative plots of all the physical quantities we have considered and a detailed analysis is presented to illustrate the main features and the variation profiles of the properties with the applied external magnetic field and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.