Abstract
Calculations of the compression and temperature gradient of the core are facilitated by the use of the thermodynamic Gruneisen ratio, γ=3αKs/ρ{variant}CP. A pressure-dependent factor in γ is found to have the same numerical value for the core as for laboratory iron, justifying the use of a constant value for γ (1.6) in core calculations. The density of the outer core is satisfied by the assumption that it contains about 15% of light elements, particularly sulphur, whereas the inner core is probably ironnickel with very little lighter component. The presence of sulphur in the outer core reduces its liquidus at least 600° below pure iron, so that the adiabatic gradient does not intersect the liquidus, as Higgins and Kennedy have shown would occur in a pure iron core. The inner core is probably close to its melting point, 4700 K, and the adiabatic temperature gradient of the outer is calculated with this as a fixed point, giving 3380 K at the core-mantle boundary. The estimated electrical resistivity of the outer core, 3×10-6 Σm, corresponds to a thermal conductivity of 28 W·m-1·deg-1, which, with the adiabatic core gradient gives a minimum of 3.9×1012 W of heat conduction to the mantle. The only plausible source of this much heat is the radioactive decay of potassium in the core. As pointed out by Goles, Lewis, and Hall and Murthy, the presence of potassium becomes geochemically probable once sulphur is admitted as a core constituent. Thus it appears that the recognition of sulphur in the core resolves the two major difficulties which we have faced in attempting to understand the core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.