Abstract

Graphite/aluminium composites have been produced by means of gas pressure infiltration method. Two porous graphite preforms with a porosity of 10 and 13 vol%, respectively, have been infiltrated using either a commercially 99.85 pure aluminium or an AlSi7Mg alloy. Thermal expansion coefficient, electrical conductivity and flexural strength have been determined as a function of graphite preforms and metal matrices. To investigate the susceptibility of this composite system to thermal damage, specimens were thermally cycled between 60 and 300 °C up to 1020 cycles. Infiltrated graphites exhibited a significantly higher electrical conductivity (0.34–0.51 m/Ω mm 2) compared to porous graphite preforms depending on graphite type and metal matrix. Thermal cycling did not influence electrical conductivity. The coefficients of thermal expansion of the composites were at least three times lower than for monolithic aluminium. Thermal cycling has reduced these values even more, most likely due to stress relaxation processes. The infiltration of porous graphite preforms with AlSi7Mg alloy or Al99.85 has increased the flexural strength of the composites resulting in values up to 105 MPa. The decrease in mechanical strength due to thermal cycling was about 10%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call