Abstract

Forty-five glass fiber reinforced polymer (GFRP) rebars were tested in compression to determine their ultimate strength and Young’s modulus. The rebars (or C-bars), produced by Marshall Industries Composites, Inc., had an outside diameter of 15 mm (#15 rebar), and unbraced lengths varying from 50 to 380 mm. A compression test method was developed to conduct the experiments. Three failure modes, that are directly related to the unbraced length of the rebar, are identified as crushing, buckling, and combined buckling and crushing. The crushing region represents the failure mode a GFRP rebar would experience when confined in concrete under compression. The experimental results showed that the ultimate compressive strength of the #15 GFRP rebar failing by crushing is approximately 50% of the ultimate tensile strength. Based on a very limited number of tests, in which strain readings were acceptable, Young’s modulus in compression was found to be approximately the same as in tension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.