Abstract

Recycled industrial feedstocks can improve a textile firm's balance sheet while reducing and recycling garbage. In this study, recycled polypropylene nonwoven selvage/metal (PPNS/M) complex-ply yarns served as the weft yarns of complex woven fabrics. The core yarn of each complex-ply yarn was recycled PPNS with an area mass of 30 g/m2. Stainless steel wires wrapped each core yarn. Three combinations of materials were tested; type A used core yarns with no metals; type B used core yarns with stainless steel reinforcement wires; type C used core yarns with both stainless steel and copper reinforcement wires. For the manufacturing process, the speed of the rotor twister was 8000 rpm and the wrap counts of the recycled PPNS/M complex-ply yarns were 0.5, 1.5, 2.5, 3.5, and 4.5 turns/cm. We fabricated the PPNS/M complex-ply yarns into PPNS/M complex woven fabrics. We performed maximum breaking strength and elongation testing: the complex-ply yarns wrapped at 2.5 turns/cm and reinforced with stainless steel wires and copper wires had a maximum breaking strength of 47.8 N and an elongation of 47.9%. Moreover, fabrics woven from those same yarns had a tensile strength of 637. 9 N and a tensile strain of 40.8%. Fabrics woven from yarns with a wrap count of 4.5 turns/cm and reinforced with stainless steel wires and copper wires showed an optimum air permeability of 80 cm3/cm2/s. The lowest surface resistivity found with the fabric specimen woven with type C yarns, which was 28.2 Ω/sq.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call