Abstract

Abstract Anisotropic shrinkage (tangential and longitudinal), equilibrium moisture content (EMC) and fibre saturation point (FSP) were measured for separated earlywood (EW) and latewood (LW) of a 0.75-m-long log of 20-year old Pinus radiata that was cut at breast height from a selected tree in the forest of Central North Island, New Zealand. The experimental results have shown that at 12% moisture content (MC), tangential shrinkage was 3.23% for EW and 3.90% for LW, with an overall average of 3.56%. Longitudinal shrinkage was 0.23% for EW and 0.21% for LW with an overall average of 0.22%. Shrinkage for the oven dry (OD) state showed similar trends to those at 12% MC in terms of the differences between EW and LW. The tangential and longitudinal shrinkage varied significantly along the radius from pith to bark. The EW tangential shrinkage increased from pith to the seventh growth ring and then remained relatively constant until the last ring adjacent to the bark. The LW tangential shrinkage also increased from the pith outwards until the seventh growth ring, but beyond that was more variable than the EW shrinkage. Both EW and LW showed similar longitudinal shrinkage, with the highest values in the second growth ring, from which the shrinkage decreased exponentially towards the bark. LW had a slightly higher EMC than EW at a relative humidity (RH) below 80%, but the trend was reversed for RH above 80%. The EMC differences between EW and LW were less than 0.6%. The overall average FSP for Pinus radiata was 29.1%, with actual values varying from 25% to 32.8%. The earlywood FSP (28.9%) was slightly lower than that of the latewood (29.4%).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call