Abstract

Nucleoid-associated proteins (NAPs) play important roles in both chromosome packaging and gene regulation in bacteria. The underlying mechanisms, however, remain elusive particularly for how NAPs contribute to chromosome packaging. We report here a characterization of the binding sites for several major NAPs in E. coli, namely HNS, IHF, Fis, Dps and a non-NAP protein, FNR, in terms of the physical properties of their binding DNA. Our study shows that (i) as compared with flanking regions, the binding sites for IHF, Fis and FNR tend to have high intrinsic curvature, while no characterized pattern of intrinsic curvature distribution around those of HNS and Dps; (ii) all the binding sites analyzed in this study except those of HNS are characterized by high structural flexibility; (iii) the intrinsic curvature and flexibility at the binding sites for Fis and IHF are found to be coupled with the sequence specificity required in their binding, while the physical properties of the binding regions for both Dps and FNR are independent of sequence specificity. Our data suggest that physical properties of DNA sequence may contribute to binding of NAPs and mediate genome packaging and transcriptional regulation of the downstream genes. Our results should be informative for prediction of NAPs binding sites and understanding of the bacterial chromosome packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call