Abstract

We investigate the transport properties of a complex porous structure with branched fractal architectures formed due to the gradual deposition of dimers in a model of multilayer adsorption. We thoroughly study the interplay between the orientational anisotropy parameter p_{0} of deposited dimers and the formation of porous structures, as well as its impact on the conductivity of the system, through extensive numerical simulations. By systematically varying the value of p_{0}, several critical and off-critical scaling relations characterizing the behavior of the system are examined. The results demonstrate that the degree of orientational anisotropy of dimers plays a significant role in determining the structural and physical characteristics of the system. We find that the Einstein relation relating to the size scaling of the electrical conductance holds true only in the limiting case of p_{0}→1. Monitoring the fractal dimension of the interface of the multilayer formation for various p_{0} values, we reveal that in a wide range of p_{0}>0.2 interface shows the characteristic of a self-avoiding random walk, compared to the limiting case of p_{0}→0 where it is characterized by the fractal dimension of the backbone of ordinary percolation cluster at criticality. Our results thus can provide useful information about the fundamental mechanisms underlying the formation and behavior of wide varieties of amorphous and disordered systems that are of paramount importance both in science and technology as well as in environmental studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call