Abstract

Soil electrical resistivity has been used quite extensively for assessing mechanical properties of chemically treated soils in the recent past. One of the most innovative applications of this technique could be in the field of ground improvement wherein carbonated reactive magnesia (MgO) is employed for treating soils. With this in view, a systematic study that targets the application of electrical resistivity to correlate physical and strength characteristics of the carbonated reactive MgO-admixed silty soil is initiated, and its details are presented in this manuscript. To achieve this, reactive MgO-admixed soils were carbonized by exposing them to CO2 for different durations, and subsequently their electrical resistivity and unconfined compressive strength were measured. In this context, the role of a parameter, the ratio of the initial water content of the virgin soil to reactive MgO content (designated as w0/c), has been highlighted. It has also been demonstrated that w0/c is able to correlate, uniquely and precisely, with the physicochemical parameters of the soils (viz., unit weight, water content at failure, porosity, degree of saturation, and soil pH), electrical resistivity, and unconfined compressive strength at various carbonation times. In addition, microstructural properties have been obtained from the X-ray diffraction, scanning electron microscopy, and mercury intrusion porosimetry analyses. These properties have been used to substantiate the findings related to the carbonation of the reactive MgO-admixed soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.