Abstract

We investigated the physical properties, antimicrobial activity, and tissue reaction to Apexit Plus in comparison to Sealapex. Flow, radiopacity, setting time, and solubility were evaluated in each material. The antimicrobial activity against Enterococcus faecalis was performed. Polyethylene tubes containing Apexit Plus or Sealapex, and without material (control group) were implanted into the subcutaneous tissue of rats. At 7, 15, 30, and 60 days of implantation, the specimens were paraffin-embedded and the number of inflammatory cells (ICs) and the amount of birefringent collagen (BC) were quantified. The von Kossa reaction followed by immunohistochemistry for detection of alkaline phosphatase (ALP) was also performed. Statistical analysis was performed with ANOVA and Tukey test (p ≤ 0.05). The flow value of Apexit Plus was greater than Sealapex, whereas the radiopacity (3.44 mm Al) was lower than Sealapex (6.82 mm Al). Apexit Plus showed lower solubility and shorter initial and final setting (p < 0.0001), whereas the antimicrobial activity was significantly greater than Sealapex. Although the number of ICs was higher in Apexit Plus (p = 0.0009) at 7 days, no significant difference was detected between Apexit Plus and Sealapex at 15, 30, and 60 days. All groups showed higher values for BC in the capsules over time. ALP-immunolabelled cells were observed, mainly around von Kossa-positive structures, either in the capsules of Apexit Plus or Sealapex. Therefore, our results revealed that Apexit Plus exhibited a greater effectiveness against Enterococcus faecalis and better physical properties than Sealapex, except for the radiopacity. In vivo findings indicate that Apexit Plus is biocompatible and presents potential bioactivity in the subcutaneous tissue.

Highlights

  • The use of endodontic sealers with antibacterial activity has been effective in the clearance of persistent microorganisms [1] favoring periapical tissue repair [2]

  • After 180 min, a glass plate weighing 20 g was placed on the sealer and a load of 100 g was added on this plate, totaling a mass of 120 g, which was maintained on the sealer for 7 min

  • Some physical properties of Apexit Plus were evaluated; we evaluated whether this endodontic sealer is biocompatible and potentially bioactive

Read more

Summary

Introduction

The use of endodontic sealers with antibacterial activity has been effective in the clearance of persistent microorganisms [1] favoring periapical tissue repair [2]. Calcium hydroxide releases hydroxyl ion, providing an alkaline pH and exerting an antibacterial effect followed by periapical tissue repair [3,4]. Among several calcium hydroxide-based root canal filling materials, Sealapex Glendora, CA, USA) is considered biocompatible [5]. This sealer contains calcium hydroxide in a polymeric matrix [1]. The base paste of this endodontic sealer contains calcium oxide, bismuth. Sealapex stimulates the deposition of calcified structure, inducing apical sealing after root canal treatment [5]. Due to a prolonged setting time, this sealer presents high solubility [6], leading to non-homogeneous setting reaction forming a fragile matrix [7,8]

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.