Abstract

BackgroundThe aim of this study was to investigate the physical properties and biological effects of an experimentally developed injectable premixed calcium-silicate root canal sealer (Endoseal) in comparison with mineral trioxide aggregate (MTA) and a resin-based sealer (AHplus).MethodsThe pH, solubility, dimensional change, flow, and radiopacity of the materials were evaluated. Biocompatibility was evaluated on the basis of cell morphology and a viability test using MC3T3-E1 cells. For evaluate inflammatory reaction, the tested sealers were implanted into dorsal subcutaneous connective tissue of Sprague Dawley rats. After 7 days, the implants with the surrounding tissue were retrieved, and histological evaluation was performed.ResultsEndoseal showed high alkalinity similar to that of MTA. The solubility of the tested materials was similar. The dimensional change and flow of Endoseal was significantly higher than that of other materials (P < 0.05). The radiopacity of Endoseal was lower than that of AHplus (P < 0.05). The biocompatibility was similar to those of MTA. Inflammatory reaction of Endoseal was similar with that of MTA, but lower than that of AHplus (P < 0.05).ConclusionsThe present study indicates that Endoseal has favorable physical properties and biocompatibility. Therefore, we suggest that Endoseal has the potential to be used as a predictable root canal sealer.

Highlights

  • The aim of this study was to investigate the physical properties and biological effects of an experimentally developed injectable premixed calcium-silicate root canal sealer (Endoseal) in comparison with mineral trioxide aggregate (MTA) and a resin-based sealer (AHplus)

  • Endodontic sealers are used for the obturation of root canal systems in order to achieve a fluid-tight seal between the dentinal wall and core filling material throughout the entire canal [1]

  • It is generally believed that MTA and its derivatives dissolve into calcium hydroxide when coming into contact with soft tissue, which results in a high pH [12]

Read more

Summary

Introduction

The aim of this study was to investigate the physical properties and biological effects of an experimentally developed injectable premixed calcium-silicate root canal sealer (Endoseal) in comparison with mineral trioxide aggregate (MTA) and a resin-based sealer (AHplus). Endodontic sealers are used for the obturation of root canal systems in order to achieve a fluid-tight seal between the dentinal wall and core filling material throughout the entire canal [1]. A root canal sealer must demonstrate appropriate physicochemical and biological properties. Grossmann stated that an ideal root canal sealer should possess excellent sealing ability, dimensional stability, a slow setting time, insolubility, and biocompatibility [2]. There are many types of root canal sealers available in the endodontic market; resin-based. This calcium-silicate cement is considered an MTA-derived material because it contains similar chemical elements as MTA.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call