Abstract
With the successful launch of the Swift Gamma-Ray Burst Explorer, a rich trove of early X-ray afterglow data has been collected by its onboard X-Ray Telescope (XRT). Some interesting features are emerging, including a distinct rapidly decaying component preceding the conventional afterglow component in many sources, a shallow decay component before the more normal'' decay component observed in a good fraction of GRBs, and X-ray flares in nearly half of the afterglows. In this paper we systematically analyze the possible physical processes that shape the properties of the early X-ray afterglow light curves and use the data to constrain various models. We suggest that the steep decay component is consistent with the tail emission of the prompt gamma-ray bursts and/or the X-ray flares. This provides strong evidence that the prompt emission and afterglow emission are likely two distinct components, supporting the internal origin of the GRB prompt emission. The shallow decay segment observed in a group of GRBs suggests that very likely the forward shock keeps being refreshed for some time. This might be caused by either a long-lived central engine, or a wide distribution of the shell Lorentz factors, or else possibly the deceleration of a Poynting flux-dominated flow. X-ray flares suggest that the GRB central engine is very likely still active after the prompt gamma-ray emission is over, but with a reduced activity at later times. In some cases, the central engine activity even extends to days after the burst triggers. Analyses of early X-ray afterglow data reveal that GRBs are indeed highly relativistic events and that early afterglow data of many bursts, starting from the beginning of the XRT observations, are consistent with the afterglow emission from an ISM environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.