Abstract

The particles making up the Jovian ring may be debris which has been excavated by micrometeoroids from the surfaces of many unseen ( R ≲ 1 km) parent bodies (or “mooms” as we will occasionally call them) residing in the ring. A distribution of particle sizes exists: large objects are sources for the small visible ring particles and also account for the absorption of charged particles noted by Pioneer; the small grains are generated by micrometeoroid impacts, by jostling collisions among different-sized particles, and by self-fracturing due to electrostatic stresses. The latter are most effective in removing surface asperities to thereby produce smooth and crudely equidimensional grains. The presence of intermediate-sized (radius of several to several hundred microns) objects is also expected; these particles will have a total area comparable to the area of the visible ring particles. The nominal size (−2 μm) of the visible particles derived from their forward-scattering characteristics is caused, at least in part, by a selection effect but may also reflect a fundamental grain size or the preferential generation of certain sizes along with the destruction of others. The tiny ring particles have short lifetimes (≲10 2−10 3 years) limited by erosion due to sputtering and meteoroid impacts. Plasma drag significantly modifies orbits in ∼10 2 years but Poynting-Robertson drag is not effective ( T PR ∼ 10 5 years) in removing debris. The ring width is influenced by the distribution of source satellites, by the initial ejection velocity off them, by electromagnetic scattering, and by solar radiation forces. In the absence of electromagnetic forces, debris will reimpact a mother satellite or collide with another particle in about 10 years. A relative drift between different-sized particles, caused by a lessened effective gravity due to the Lorentz force, will substantially shorten these times to less than a month. The ring thickness is determined by a balance between initial conditions (abetted perhaps by electromagnetic scattering) and collisional damping; existence of the “halo” over the diffuse disk compared to its relative absence over the bright ring indicates the presence of mooms in the bright ring but not in the faint disk. Small satellites ( R ≲ 1 km) will not reaccumulate colliding dust grains whereas satellites having the size of J14 or J16 may be able to do so, depending upon their precise shape, size, density, and location. Visible ring structure could indicate separate source satellites. The particles in the faint inner disk are delivered from the bright ring by orbital evolution principally under plasma drag. The halo is comprised of small particles (∼0.1 μm) partially drawn out of the faint disk by interactions with the tilted Jovian magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call