Abstract
Upward propagating acoustic waves heat the atmosphere at essentially all heights due to effects of viscous dissipation, sensible heat flux divergence, and Eulerian drift work. Acoustic wave‐induced pressure gradient work provides a cooling effect at all heights, but this is overwhelmed by the heating processes. Eulerian drift work and wave‐induced pressure gradient work dominate the energy balance, but they nearly cancel at most altitudes, leaving their difference, together with viscous dissipation and sensible heat flux divergence to heat the atmosphere. Acoustic waves are very different from gravity waves which cool the upper atmosphere through the effect of sensible heat flux divergence. Acoustic wave dissipation could be an important source of upper atmospheric heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Geophysical Research: Atmospheres
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.