Abstract

Mollusks, as well as many other living organisms, have the ability to shape mineral crystals into unconventional morphologies and to assemble them into complex functional mineral-organic structures, an observation that inspired tremendous research efforts in scientific and technological domains. Despite these, a biochemical toolkit that accounts for the formation of the vast variety of the observed mineral morphologies cannot be identified yet. Herein, phase-field modeling of molluscan nacre formation, an intensively studied biomineralization process, is used to identify key physical parameters that govern mineral morphogenesis. Manipulating such parameters, various nacre properties ranging from the morphology of a single mineral building block to that of the entire nacreous assembly are reproduced. The results support the hypothesis that the control over mineral morphogenesis in mineralized tissues happens via regulating the physico-chemical environment, in which biomineralization occurs: the organic content manipulates the geometric and thermodynamic boundary conditions, which in turn, determine the process of growth and the form of the biomineral phase. The approach developed here has the potential of providing explicit guidelines for the morphogenetic control of synthetically formed composite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.