Abstract

Free-space micromachined optical switching technology has emerged as a promising candidate for the transparent optical cross connects that are needed in next-generation optical transport networks. This paper deals with the system design of two-dimensional (2-D) microelectromechanical system (MEMS)-based cross connects. In particular, we propose a method, applicable to any kind of 2-D MEMS switching architectures, which finds the best choices of the basic geometrical parameters of the device (such as mirror radius and beam-waist size) allowing the achievement of given insertion-loss and differential-loss target values for the overall switching matrix. Our proposal is based on a widely used model of the loss mechanisms in a 2-D MEMS switch, keeping Gaussian-beam divergence and free-space/fiber mode mismatching into account. By adopting the proposed design technique, we compare various 2-D MEMS architectures recently proposed in the technical literature in terms of cost and feasibility of large port count optical switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.