Abstract

High-resolution X-ray diffraction method (XRD) is used to determine sizes and crystallographic orientation of the nanocrystallites of the Pd and Pd5Ba phases in palladium–barium cathode. Electron spectroscopy for chemical analysis (ESCA) is used to study Ba and Pd chemical states in cathode material and determine the phase composition including dissolved microimpurities in the phases. The comparison of the XRD and ESCA data makes it possible to reveal effects related to the formation of the BaO crystallites in the cathode material, which are responsible for the emission properties. Electron-energy loss spectroscopy is used to determine the concentration of oxygen vacancies in the BaO crystallites that are formed in the cathode material due to activation. An original crystallite model of the working palladium–barium cathodes that is based on the results of this work may serve as an alternative to the known film model and makes it possible to optimize technology of cathode fabrication and activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.