Abstract

A physical model for austenite recrystallization of steel concerning TMCP is developed. Dislocation density plays a key role as recrystallization driving force. The dislocation density change is a result of competition between dislocation generation and dynamic recovery. Recrystallization is described as a nucleation-growth process. An abnormal subgrain growth mechanism is introduced for nucleation. A few subgrains fulfilling abnormal growth conditions will stand out and become nuclei of recrystallization. The recrystallized grain grows to the deformed materials driven by the stored energy. Oswald ripening occurs for grains surrounded by recrystallized grains. The models were verified by laboratory simulation results for selected austenite stainless steels. It showed good agreement between predicted and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.