Abstract

AbstractThis paper discusses the procedure developed for simulating water sprays at a reduced scale (i.e., physical modeling) and, more impotantly, compares the model spray characterstics to corresponding full scale spray characteristics. An ideal physically modeled spray would simulate actual spray momentum, water volume flow rate, air entrainment rate, discharge water pressure, spray angle, spray pattern and drop size distribution. Full scale measurements or estimates of air discharge velocity, momentum, entrainment rate and drop size distributions were obtained for two types of sprays at two discharge pressures, various spray angles and at a 500 gpm flow rate. Physical modeling was conducted to simulate the full scale nozzles at a 1:50 scale reduction using commercially available spray nozzles. Measurements of spray momentum, volume flow rate and air entrainment rate were obtined for a subset of spray angles used in the full scale testing. Particle size distribution was not measured since it was considered of secondary importance in the simulation. The results of the study showed that model and full scale momentum, volume flow rate and air entrainment rates compared well with corresponding full scale observations (i.e., within 10 percent for momentum, 20 percent for volume flow rate and 25 percent for air entrainment rate). The results indicate that the method used for simulating water sprays is valid and that the model sprays adequately simulate the mechanical action of full scale sprays on vapor clouds. The results provide evidence that physical modeling can be used to evaluate the effectiveness of water sprays as a mitigation technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call