Abstract
Conventional models of the time response of avalanche photodiodes (APDs) assume that carriers travel uniformly at their saturated drift velocity, vsat. To test the validity of this drift velocity assumption (DVA) the model was used to compute the distribution of exit times of electrons generated in an avalanche pulse and the results were compared with those of Monte-Carlo (MC) simulations. The comparison demonstrates that, while the DVA is valid for thick (1um) avalanching regions, it does not take account of non-equilibrium effects which occur in thin avalanching regions, nor of the effects of diffusion. As a consequence, the DVA model may increasingly underestimate the speed of APDs as the width of the avalanche region is reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.