Abstract

This paper presents a physics-based model that is able to describe the TANOS memory programming transients in the Fowler-Nordheim uniform tunneling regime across the bottom-oxide layer. The model carefully takes into consideration the trapping/detrapping processes in the nitride, the limited number of traps available for charge storage, and their spatial and energetic distribution. Results are in good agreement with experimental data on TANOS devices with different gate-stack compositions, considering a quite extended range of gate biases and times. The reduced gate-bias sensitivity of the programming transients with respect to the floating-gate cell is explained in terms of a finite number of nitride traps and a thinner extension of the nitride trapping region as the gate bias is increased. The model represents a valid contribution for the investigation of the achievable performances of the TANOS technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.