Abstract

As a promising semi-active device, magneto-rheological damper has been widely used in low-frequency vibration isolation fields (within 20 Hz) such as bridge damping and building seismic resistance. Recently, the application of magneto-rheological damper has extended to medium and high frequency fields such as satellite and power engine vibration control, accompanied with an urgent need of detailed understanding of its output characteristics. In this paper, a comprehensive physical model is established to analyze dynamic performance of the magneto-rheological damper. The model, derived from both Poiseuille and Couette flow, aims to describe the relationship between the flow rate and pressure difference. The compressibility of the magneto-rheological fluid, the inertia of both the fluid and piston assembly, and the friction are involved to capture the medium and high frequency dynamics of the damping force. Theoretical calculation and simulation verification of magnetic circuit are conducted. Then the experiment based on a self-made prototype is carried out. The results show that the damping force calculated by proposed physical model matches well with the experimental results across the predefined range of frequency and coil current levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.