Abstract

Many studies have simulated traffic behavior at signalized intersections using various Car-Following (CF) models. However, the performance of which CF Model is superior at signalized intersections has not been thoroughly analyzed and evaluated. In this study, two novel Artificial Neural Network (ANN) CF models, the Convolutional Neural Network—Long Short-term Memory (CNN-LSTM) and the Convolution-LSTM (Conv-LSTM)—are first applied to predict CF behaviors at signalized intersections. Both models can extract spatial and temporal information to address the long-term dependency problem more effectively. Based on the filtered NGSIM dataset, we conduct a comparative empirical study of three conventional CF models and five ANN CF models. The dataset is divided into two categories based on the characteristics of CF behavior at signalized intersections: continuous and discontinuous. The experiments demonstrated that ANN CF models outperformed conventional CF models when the output was the velocity in two categories of traffic flow but only failed to do so when the output was acceleration in discontinuous traffic flow. The proposed models were capable of accurately predicting acceleration, but the traffic fluctuations also existed as time passed. Additionally, it was discovered that while the ANN CF model is preferable for traffic flow simulation, the conventional CF model still cannot be ignored for discontinuous traffic flow simulation, particularly when acceleration is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.