Abstract

We present a physical model constructed from the Navier-Stokes equation to describe the evolution of the probability distribution function of transverse velocity gradients in 3D isotropic turbulence. Quanitative agreement with data from direct numerical simulations of isotropic turbulence for a wide range of Reynolds number is obtained. The model is based on a concrete physical picture of self-distortion of structures and interaction between random eddies and structures; the dynamical balance explains the non-Gaussian equilibrium probability distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.