Abstract

To present a physical model for intraocular absorption of an inert gas used as a tamponade. The absorption kinetics of gas in contact with the retinal surface is examined, including the changing geometry of the shrinking gas bubble inside the eye. An analytic solution is derived that predicts how the bubble dimensions change with time, yielding a formula for the lifetime of the gas bubble. Comparison to an experimental measurement shows that the analytic solution accurately replicates the time evolution of the bubble geometry. The result is also compared to an alternative exponential model, which does not predict a finite bubble lifetime. Further experiments are needed to discriminate between the surface absorption and exponential models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.