Abstract

Data-driven linear power flow (D-LPF) models are prevalent due to their excellent accuracy. Typically, D-LPF models rely on sufficient training data. However, in practice, the training data may be insufficient due to recording errors or limited measurement conditions. To address this practical and important issue, this letter presents a physical-model-aided data-driven linear power flow (PD-LPF) model, in which, physical model parameters are introduced to assist the data-driven training process, thereby avoiding unreasonable training results, and guaranteeing linearization accuracy for critical operating points with the maximum probability. The proposed method is applicable for both transmission and distribution systems. Compared to current LPF models, the PD-LPF model exhibits excellent accuracy and robustness under severe missing-data conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call