Abstract

Abstract Intermetallic titanium aluminides exhibit attractive thermo-physical properties, which give them the potential for extensive use as lightweight structural components. Novel design concepts are based on alloys with the general composition (in at.%) Ti-45Al-(5–10) Nb, which were subjected to precipitation hardening. Optimized compositions have been identified that are capable of carrying stresses in excess of 700 MPa at service temperatures of 700°C and have superior creep properties. The alloys exhibit at room temperature yield stresses in excess of 1GPa combined with plastic tensile elongations of about 2%. Wrought alloys of this type can be an attractive alternative to the nickel-base superalloys in certain ranges of stress and temperature. The future and promise of these new TiAl alloys lies in innovative processing methods designed to achieve better performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.