Abstract

AbstractDeserts play an important role in the climate system, which is closely associated with the emission and transport of dust aerosols. Based on the intensive observation experiment in the Taklimakan Desert, the potential physical processes between the deep convective boundary layer (CBL) and dust emission are revealed in this study. Deep CBL enables the formation of clouds in the late afternoon, leading to significant cooling of surface. Large‐scale buoyant coherent structures thereby transform into the mechanical coherent structures confined near the surface. The responses promote the earlier occurrence of low‐level jet (LLJ) than in cloudless conditions, which allows the downward transport of LLJ momentum and substantially increases surface wind. Therefore, dust emission is initiated by strong wind at dusk and lasts for several hours. The results are useful to predict dust emissions and improve our understanding of distinctive boundary‐layer processes in desert regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.