Abstract

We have studied the offset printing of liquid polymers curable by exposure to ultraviolet light onto flat and unpatterned silicon and glass substrates. The interplay of capillary, viscous, and adhesion forces dominates the dynamics of ink transfer at small feature sizes and low capillary number. For smooth and nonporous substrates, pattern fidelity can be compromised because the ink contact lines are free to migrate across the substrate during plate separation. Using a combination of experiments and equilibrium simulations, we have identified the physical mechanisms controlling ink transfer and pattern fidelity. In considering the resolution limit of this technique, it appears that the dynamics of ink flow and redistribution during transfer do not explicitly depend on the absolute feature size, but only on the aspect ratio of film thickness to feature size. Direct printing holds promise as a high-throughput fabrication method for large area electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.