Abstract

Due to the large coal fly ash (FA) production and its obvious environmental impact, alternative uses of this by-product must be researched. A considerable effort is being made worldwide on research concerning the reuse of FA as a source of alternative raw materials to produce new binder materials. One of the most promising building materials are geopolymers or alkali-activated materials (AAM). In this study, FA (25–75 wt %) was used to evaluate the potential of using this waste as a source of aluminosilicates for the synthesis of geopolymers to replace metakaolin (MK) as precursor. MK and FA geopolymers were also synthesized as a control. Sodium hydroxide and sodium silicate were used as alkaline-activator mix (Na2SiO3/NaOH ratio: 0.92). The geopolymers synthesized were characterized by Fourier Transform Infrared Spectroscopy (FTIR) X-ray diffraction (XRD) and Scanning Electron Microscopy-Energy Dispersive X-ray spectroscopy (SEM-EDS). The results indicate that control geopolymers, MK and FA geopolymers have similar mechanical and thermal properties. However, the MK-FA blended geopolymers have slightly lower compressive strengths and lower thermal conductivity. The decrease in the properties of the FA and MK-FA blended geopolymers may be due to the high solid/liquid ratio used, since the spherical particles of the FA require less liquid due to their higher workability. However, the obtained geopolymers can be a satisfactory solution for the recovery of waste that results in sustainable construction materials that meet the standard to be used for loadbearing concrete masonry units with insulating properties superior to Portland cement approaching the principles of circular economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call