Abstract

This study aims to investigate the impact of zirconium nitride (ZrN) additive on the microstructural features and physical-mechanical characteristics of TiC. For this objective, two different samples, namely monolithic TiC and TiC-5 wt% ZrN, were produced by spark plasma sintering method at 1900 °C for 10 min under 40 MPa. X-ray diffraction, field emission scanning electron microscopy, and thermodynamical evaluations confirmed the formation of a single solid solution of (Ti,Zr)(C,N), along with a carbon-rich secondary phase in the doped ceramic. The monolithic TiC provided a higher relative density (95.5%) than the ZrN-doped sample. The fractographical assessment revealed a change in the fracture mode of TiC from transgranular to intergranular with introducing the ZrN additive. Reinforcing TiC with ZrN resulted in a Vickers hardness of 2640 HV0.1 kg, a flexural strength of 444 MPa, and a thermal conductivity of 14.9 W/mK. Furthermore, the TiC–ZrN sample presented a higher coefficient of friction (0.37 on average) compared to the monolithic TiC (0.34 on average).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.