Abstract

The Laguerre-Gauss modes are a class of fundamental and well-studied optical fields. These stable, shape-invariant photons - exhibiting circular-cylindrical symmetry - are familiar from laser optics, micro-mechanical manipulation, quantum optics, communication, and foundational studies in both classical optics and quantum physics. They are characterized, chiefly, by two modes numbers: the azimuthal index indicating the orbital angular momentum of the beam - which itself has spawned a burgeoning and vibrant sub-field - and the radial index, which up until recently, has largely been ignored. In this manuscript we develop a differential operator formalism for dealing with the radial modes in both the position and momentum representations, and - more importantly - give for the first time the meaning of this quantum number in terms of a well-defined physical parameter: the "intrinsic hyperbolic momentum charge".

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.