Abstract

We investigate the suitability of natural orbitals as a basis for describing many-body excitations. We analyze to which extent the natural orbitals describe both bound as well as ionized excited states and show that depending on the specifics of the excited state the ground-state natural orbitals may yield a good approximation. We show that the success of reduced density-matrix functional theory in describing molecular dissociation lies in the flexibility provided by fractional occupation numbers while the role of the natural orbitals is minor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.