Abstract

Introduction: The law of Zipf-Mandelbrot is a power law, which has been observed in natural languages. A mathematical diagnosis of fetal cardiac dynamics has been developed with this law. Objective: To develop a methodology for diagnostic aid to assess the degree of complexity of adult cardiac dynamics by Zipf-Mandelbrot law. Methodology: A mathematical induction was done for this; two groups of Holter recordings were selected: 11 with normal diagnosis and 11 with acute disease of each group, one Holter of each group was chosen for the induction, the law of Zipf-Mandelbrot was applied to evaluate the degree of complexity of each Holter, searching similarities or differences between the dynamics. A blind study was done with 20 Holters calculating sensitivity, specificity and the coefficient kappa. Results: The complexity grade of a normal cardiac dynamics varied between 0.9483 and 0.7046, and for an acute dynamic between 0.6707 and 0.4228. Conclusions: A new physical mathematical methodology for diagnostic aid was developed; it showed that the degree of complexity of normal cardiac dynamics was higher than those with acute disease, showing quantitatively how cardiac dynamics can evolve to acute state.

Highlights

  • The law of Zipf-Mandelbrot is a power law, which has been observed in natural languages

  • Once the fractal dimensions of the two Holter statistics records used in the induction had been realized, it was found that for normal Holter, this value was 0.9225 (Figure 1 and Figure 2), and for the cardiac dynamics with acute disease was 0.5267 (Figure 3 and Figure 4)

  • When the blind study was performed with 20 Holter records, it was found that the values ranged between 0.7046 and 0.9483 for normality, and between 0.4228 and 0.6707 for acute dynamics

Read more

Summary

Introduction

The law of Zipf-Mandelbrot is a power law, which has been observed in natural languages. The Zipf-Mandelbrot law was applied for developing a new diagnosis of clinical application to assess fetal monitoring, from the analysis of the Components Dynamic System (CDS) in the monitoring, from four prototypical records and its comparison with other monitoring [11] This diagnostic method consists in a simplification of clinical parameters for the evaluation of fetal monitoring, because it requires few criteria, defined from objective and reproducible measurements, compared with traditional clinical methodology that requires five evaluation parameters, adding explanatory subparameters, which requires additional exams to determine the clinical diagnosis, it allows anticipating for adverse situations, this methodology was refined and presented at the XVIII Figo World Congress of Gynecology and Obstetrics [12]. In Colombia, DANE (Departamento Administrativo Nacional de Estadística) reported for 2009 that the CVD were one of the five principal causes of mortality, among them was ischemic heart disease with 28,650 cases and cerebrovascular disease with 14,555 cases [13], which were considered as two of the leading causes of death in the country

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call