Abstract

The chloroplast genomes from the interfertile green algae Chlamydomonas eugametos and C. moewusii have been compared in their overall sequence organization. Physical mapping of Aval, BstEII and EcoRI restriction sites on the C. moewusii chloroplast genome revealed that this 292 kilobase-pair (kbp) genome is 49 kbp larger than the C. eugametos genome. Heterologous fragment hybridizations indicated the same order of common sequence elements on the two algal genomes. Almost all of the 49 kbp size difference is accounted for by the presence of two large extra sequences in C. moewusii: a 21 kbp sequence in the inverted repeat and a 5.8 kbp sequence in the single copy-region bordering the 16S ribosomal RNA (rRNA) genes. In addition to these two major deletion/addition differences, 42 restriction site and fragment length differences (ranging from 100 to 500 base pairs) were mapped on the two algal genomes. Surprisingly, the greatest density of these differences was found to be confined within the inverted repeat, one of the most conserved regions of land plant chloroplast genomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.