Abstract

Experimental observations show that calcium signals in response to external stimuli encode information via frequency modulation or alternatively via amplitude modulation. Here, by arguments of bifurcation theory and bifurcation control theorem, the amplitude and frequency manipulation of limit cycle in Shen-Larter cell system are investigated. A nonlinear feedback controller is then applied to the system, in order to assign the peak frequency to a prescribed value, such that bifurcation is minimized or eliminated in the closed-loop system. And numerical simulations are presented in order to illustrate the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.