Abstract

A new approach for locating single-copy DNA sequences on pachytene chromosomes of maize (Zea mays L.) was developed. A cosmid clone with homologous sequences to a molecular marker (umc105a) linked to a quantitative trait locus (QTL) for resistance against sugarcane borer (SCB) was physically mapped by fluorescence in situ hybridization (FISH) to the short arm of chromosome 9. The marker umc105a was genetically placed in the centromeric region. To suppress signals generated by maize repetitive DNA, competitive in situ suppression (CISS) hybridization was necessary to obtain specific signals from umc105a. A centromere specific DNA probe (CentC) was used in a double-labeling technique as a reference marker. Fluorescence signals generated by umc105a cosmid and CentC were specific and highly reproducible. Thus the single-copy DNA sequence of umc105a was physically localized on the short arm of chromosome 9 near the telomere. This is the first report of physical localization of single-copy DNA sequence by CISS hybridization to a maize pachytene chromosome.Key words: fluorescence in situ hybridization, maize, pachytene chromosome, single-copy sequence, CISS hybridization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.