Abstract

This paper studies physical layer security in a wireless ad hoc network with numerous legitimate transmitter–receiver pairs and eavesdroppers. A hybrid full-duplex (FD)/half-duplex receiver deployment strategy is proposed to secure legitimate transmissions, by letting a fraction of legitimate receivers work in the FD mode sending jamming signals to confuse eavesdroppers upon their information receptions, and letting the other receivers work in the half-duplex mode just receiving their desired signals. The objective of this paper is to choose properly the fraction of FD receivers for achieving the optimal network security performance. Both accurate expressions and tractable approximations for the connection outage probability and the secrecy outage probability of an arbitrary legitimate link are derived, based on which the area secure link number, network-wide secrecy throughput, and network-wide secrecy energy efficiency are optimized, respectively. Various insights into the optimal fraction are further developed, and its closed-form expressions are also derived under perfect self-interference cancellation or in a dense network. It is concluded that the fraction of FD receivers triggers a non-trivial tradeoff between reliability and secrecy, and the proposed strategy can significantly enhance the network security performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.