Abstract

Backscatter wireless communication is an emerging technique widely used in low-cost and low-power wireless systems, especially in passive radio frequency identification (RFID) systems. Recently, the requirement of high data rates, data reliability, and security drives the development of RFID systems, which motivates our investigation on the physical layer security of a multiple-input multiple-output (MIMO) RFID system. In this paper, we propose a noise-injection precoding strategy to safeguard the system security with the resource-constrained nature of the backscatter system taken into consideration. We first consider a multi-antenna RFID tag case and investigate the secrecy rate maximization (SRM) problem by jointly optimizing the energy supply power and the precoding matrix of the injected artificial noise at the RFID reader. We exploit the alternating optimization method and the sequential parametric convex approximation method, respectively, to tackle the non-convex SRM problem and show an interesting fact that the two methods are actually equivalent for our SRM problem with the convergence of a Karush-Kuhn-Tucker (KKT) point. To facilitate the practical implementation for resource-constrained RFID devices, we propose a fast algorithm based on projected gradient. We also consider a single-antenna RFID tag case and develop a low-complexity algorithm which yields the global optimal solution. Simulation results show the superiority of our proposed algorithms in terms of the secrecy rate and computational complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call