Abstract

In this paper, we propose a novel secure buffer-aided decode-and-forward relay selection that amalgamates the benefits of the buffer-state-based relay selection, the max-ratio criterion, the simultaneous activation of multiple source-to-relay links, and the cooperative beamforming in dual-hop networks. More specifically, the proposed scheme is designed for selecting a single or multiple relay nodes for packet reception or transmission based on the buffer states of relay nodes, while avoiding the detrimental effects of both an empty buffer state and a buffer overflow. Analytical bounds on the secrecy outage probability and the average delay are derived for our proposed scheme, based on a Markov chain process, in order to verify the system model of our proposed scheme. Furthermore, we introduce the concept of cooperative jamming into the proposed scheme, in order to interfere with an eavesdropper's reception, while dispensing with the full channel state information associated with an eavesdropper at a central coordinator. Our simulation results demonstrate that the proposed schemes outperform the existing buffer-based secure relay selection schemes, in terms of both the secrecy outage probability and the average delay, as the explicit benefits of our novel introduced concepts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.