Abstract

Visible light communication (VLC) is a promising technology for next-generation indoor wireless broadband communication systems. Physical layer security (PLS) is one proposed method to ensure data security for VLC in public areas. However, most PLS studies in the literature neglect the reflections in the VLC channel and do not consider inter-symbol interference (ISI). This paper investigates the ISI effects on the secrecy rate in multiple-input single-output VLC systems where the reflections are not neglected for the cases of perfect and imperfect knowledge of the eavesdropper’s channel state information. We aim to compensate for the ISI effects by designing zero-forcing (ZF) and artificial noise (AN) beamformers. In addition, we formulate optimization problems to maximize the secrecy rate resulting in non-convex and NP-hard problems. Thus, we utilize the particle swarm optimization algorithm for solutions and also convert non-convex optimization problems into easily solvable linear problems. Furthermore, robust ZF and AN beamformers for the worst-case scenario are considered for the cases of ISI and no ISI. The results reveal that ISI severely degrades the secrecy rate; however, well-designed beamformers can reverse the ISI effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.