Abstract

The frequency diverse array (FDA)-based directional modulation (DM) technology plays an important role in the physical-layer security (PLS) transmission of 5G and beyond communications. In order to meet the tremendous increase in mobile data traffic, a new memory-efficient design for the FDA-DM-based PLS transmission is urgently demanded. In this article, an analytical symmetrical multi-carrier FDA model is proposed in three dimensions, namely, range, azimuth angle, and elevation angle, differing from the conventional analytical approach with only range and azimuth angle considered. Then, a single-point (SP) artificial noise (AN) aided FDA-DM scheme is proposed, which reduces the memory consumption significantly compared with the conventional zero-forcing (ZF) and singular value decomposition (SVD) approaches. Moreover, the PLS performance of the proposed FDA-DM scheme is analyzed in fluctuating two-ray (FTR) fading channels for the first time, including the average secrecy capacity (ASC) and the secrecy outage probability (SOP). More importantly, the closed-form expressions for the lower bound on ASC and the upper bound on SOP are derived, respectively. The effectiveness of the analytical expressions is verified by numerical simulations. This work opens a way to lower the memory requirements for DM-based PLS transmission of 5G and beyond communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.